A Mathematical and Computational Framework for Multifidelity Design and Analysis with Computer Models

نویسندگان

  • Douglas Allaire
  • Karen Willcox
چکیده

A multifidelity approach to design and analysis for complex systems seeks to exploit optimally all available models and data. Existing multifidelity approaches generally attempt to calibrate low-fidelity models or replace low-fidelity analysis results using data from higher fidelity analyses. This paper proposes a fundamentally different approach that uses the tools of estimation theory to fuse together information from multifidelity analyses, resulting in a Bayesian-based approach to mitigating risk in complex system design and analysis. This approach is combined with maximum entropy characterizations of model discrepancy to represent epistemic uncertainties due to modeling limitations and model assumptions. Mathematical interrogation of the uncertainty in system output quantities of interest is achieved via a variance-based global sensitivity analysis, which identifies the primary contributors to output uncertainty and thus provides guidance for adaptation of model fidelity. The methodology is applied to multidisciplinary design optimization and demonstrated on a wing-sizing problem for a high altitude, long endurance vehicle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multifidelity approaches for optimization under uncertainty

It is important to design robust and reliable systems by accounting for uncertainty and variability in the design process. However, performing optimization in this setting can be computationally expensive, requiring many evaluations of the numerical model to compute statistics of the system performance at every optimization iteration. This paper proposes a multifidelity approach to optimization...

متن کامل

An Object-Oriented Framework for Distributed Computational Simulation of Aerospace Propulsion Systems

Designing and developing new aerospace propulsion systems is time-consuming and expensive. Computational simulation is a promising means for alleviating this cost, but requires a flexible software simulation system capable of integrating advanced multidisciplinary and multifidelity analysis methods, dynamically constructing arbitrary simulation models, and distributing computationally complex t...

متن کامل

Optimal Model Management for Multifidelity Monte Carlo Estimation

This work presents an optimal model management strategy that exploits multifidelity surrogate models to accelerate the estimation of statistics of outputs of computationally expensive high-fidelity models. Existing acceleration methods typically exploit a multilevel hierarchy of surrogate models that follow a known rate of error decay and computational costs; however, a general collection of su...

متن کامل

Varinace-Based Sensitivity Analysis of Deterministic Model

‎The study of many scientific and natural phenomena in laboratory condition is sometimes impossible‎, ‎therefore theire expresed by mathemathical models and simulated by complex computer models (codes)‎. ‎Running a computer model with different inputs is called a computer expriment‎. ‎Statistical issues allocated a wide range of applications for computer expriment to itself‎. ‎In this paper‎, ‎...

متن کامل

A Multifidelity Multiobjective Optimization Framework for High-Lift Airfoils

High-lift devices design is a challenging task as it involves highly complex flow features while being critical for the overall performance of the aircraft. When part of an optimization loop, the computational cost of the Computational Fluid Dynamics becomes increasingly problematic. Methods to reduce the optimization time has been of major interest over the last 50 years. This paper presents a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013